# WELLS-GARDNER ELECTRONICS 2701 N. KILDARE, CHICAGO, IL 60639 312/252-8220 TELEX: 25-3286 FAX: 312-252-8072 ## THE PRISMATIC™ #### BY WELLS-GARDNER #### **COLOR SPECIFICATIONS** #### CRT - From 9" to 25" diagonal measure - P22 phosphor - Polished faceplate standard: variety of optional faceplates and transmittances available. - Stripe trio spacings (standard): 0.62 mm (9"), 0.66 mm (13"), 0.82 mm (19"), 0.82 mm (25"). - · Optional finer pitches available. #### INPUT SIGNALS Video: RGB analog, 1v to 5v peak-to-peak (adjustable with contrast control), 4.7k ohm input impedance, 40 usec to 50 usec active video. #### Optional inputs available: - Negative video - RGB analog 0-0.75v, 75 ohm input impedance - Composite video (NTSC) - Both composite video and RGB analog: Both signal sources can be connected to the monitor at the same time. Monitor display can be switched from one to the other, at anytime at pixel or vertical frame rate. - Sync: TTL positive or negative going, separate or composite. Input impedance: 20K ohms for positive going sync; 12K ohms for negative going sync. #### HORIZONTAL SCAN - Width: Adjustable with just one coil to accommodate active video from 40 usec to 50 usec. - Frequency: 15.1 kHz to 16.8 kHz standard; higher scan frequencies avaliable. - Linearity: ± 5% #### PICTURE SIZE REGULATION • 2% #### VERTICAL SCAN • Frequency: 47 Hz to 63 Hz • Linearity: ± 5% #### GEOMETRIC DISTORTION • ± 2% (max). #### VIDEO CHARACTERISTICS - Bandwidth (-3 db): 12 MHz typical - Rise Time: Less than 50 nanoseconds - Overshoot (max): 5% #### MECHANICAL - The 19" monitor is also available in universal mount brackets. The monitor can be mounted in the user's cabinet horizontally or vertically. Contact your sales representative for details. - The standard Prismatic-25<sup>™</sup> 25" monitor is available as a kit - without a frame. Custom frames can be furnished. - The standard Prismatic-9™ 9" monitor is available as a kit - without a frame: Also available in chassis form - adaptable to individual customer requirements. - Contact your sales representative for details. #### USER ADJUSTABLE CONTROLS AND ADJUSTMENTS Brightness, Contrast, Horizontal Hold, Horizontal Siz Horizontal Raster Position, Horizontal Video Position Vertical Hold, Vertical Size, Vertical Raster Position, Focus. Custom Control Location available. #### POWER INPUT 120 VAC +10% --15%, 50-60 Hz, 85W (max). Isolation transformer required; furnished with monitor as an option. #### **ENVIRONMENTAL CONDITIONS** Operating temperature 0<sup>o</sup> to 55<sup>o</sup>C. Complies with U.L., C.S.A., and D.H.H.S. radiation performance standard (composite video). #### RESOLUTIONS Standard CRT Fine Pitch CRT 9" 280 Pixels x 240 Lines 13" 400 Pixels x 240 Lines 640 Pixels x 240 Lines 19" 400 Pixels x 240 Lines 640 Pixels x 240 Lines 560 Pixels x 240 Lines N. A. \*\*\*\* SPECIFICATIONS ARE SUBJECT TO CHANGE IN ORDER TO ASSURE YOU THE LATEST IN DISPLAY TECHNOLOGY.\*\*\*\* # THIS MANUAL APPLIES TO THOSE MONITORS WITH SERIAL NUMBERS OF 576001 AND ABOVE. WARNINGS #### 1. Power Up Warning- An isolation transformer must be used between the AC supply and the AC plug of the monitor before servicing, testing, or operating the monitor since the chassis and the heat sink are directly connected to one side of the AC line which could present a shock hazard. Before servicing is performed, read all the precautions labelled on the CRT and chassis. # 2. X-RAY RADIATION WARNING NOTICE WARNING: PARTS WHICH INFLUENCE X-RAY RADIATION IN HORIZONTAL DEFLECTION, HIGH VOLTAGE CIRCUITS AND PICTURE TUBE ETC. ARE INDICATED BY (★) IN THE PARTS LIST FOR REPLACEMENT PURPOSES. USE ONLY THE TYPE SHOWN IN THE PARTS LIST. #### 3. High Voltage- This monitor contains HIGH VOLTAGES derived from power supplies capable of delivering LETHAL quantities of energy. Do not attempt to service until all precautions necessary for working on HIGH VOLTAGE equipment have been observed. #### 4. CRT Handling- Care must be taken not to bump or scratch the picture tube as this may cause the picture tube to implode resulting in personal injury. Shatter proof goggles must be worn when handling the CRT. High voltage must be completely discharged before handling. Do not handle the CRT by the neck. ## 5. PRODUCT SAFETY NOTICE WELLS-GARDNER END Plug Pins, Female **WARNING:** FOR CONTINUED SAFETY REPLACE SAFETY CRITICAL COMPONENTS ONLY WITH MANUFACTURER RECOMMENDED PARTS. THESE PARTS ARE IDENTIFIED BY SHADING AND BY $(\triangle)$ ON THE SCHEMATIC DIAGRAM. **AVERTISSEMENT:** POUR MAINTENIR LE DEGRE DE SECURITE DE L'APPAREIL NE REMPLACER LES COMPOSANTS DONT LE FONCTIONNEMENT EST CRITIQUE POUR LA SECURITE QUE PAR DES PIECES RECOMMANDEES PAR LE FABRICANT. For replacement purposes, use the same type or specified type of wire and cable, assuring the positioning of the wires is followed (especially for H.V. and power supply circuits). Use of alternative wiring or positioning could result in damage to the monitor or in a shock or fire hazard. #### **AC CONNECTORS AND TERMINALS** #### ALL MONITORS EXCEPT THOSE WITH MODEL NUMBERS ENDING WITH 2 OR 6: W.G. Part No. Molex Part No. 350777-1 350537-1 \*\* 350851-1 \*\* | | vv.a. i ait ivo. | | WORK FAIT ING. | |----------------------------|---------------------------|----|------------------------------------------| | Plug<br>Pins Male | 6A0396-001<br>30X0759-001 | | 19-09-2029<br>02-09-2101 | | USERS' END | | | | | Receptacle<br>Pins, Female | | or | 19-09-1029<br>02-09-1101*<br>02-09-1116* | | MODEL NUMBERS ENDING W | ITH 2: | OI | 02-09-1110 | | WELLS-GARDNER END | | | | | WEELS GARDNER END | W.G. Part No. | | Molex Part No. | | Plug<br>Pins, Male | 6A0376-002<br>30X0759-001 | | 03-09-2022<br>02-09-2101 | | USERS' END | | | | | Receptacle<br>Pins, Female | | | 03-09-1022<br>02-09-1101* | | | | or | 02-09-1116* | | MODELS NUMBERS ENDING V | WITH 6: | | | | WELLS-GARDNER END | W.G. Part No. | | AMP Part No. | | Receptacle<br>Pins, Male | 6A0402-001<br>30X0761-001 | | 350778-1<br>350538-1 | | USERS' END | | | | <sup>\*-1101</sup> is used for 20-14 AWG wire and insulation diameter range 0.065"-0.160" <sup>-1116</sup> is used for 22-18 AWG wire and insulation diameter range 0.060"-0.120" <sup>\*\* 350537-1</sup> is used for 20-14 AWG wire and insulation diameter range 0.130"-0.200" 350851-1 is used for 24-18 AWG wire and insulation diameter range 0.040"-0.100" #### **USER ADJUSTMENTS** #### 1. BRIGHTNESS CONTROL VR6 This control has been preset at the factory. However, when the video signal is applied to the monitor, a slight adjustment may be desired. Adjust this control such that the illumination is just barely extinguished from portions of the display which should be black. #### 2. CONTRAST CONTROL VR7 Adjust the contrast control for the desired picture intensity. #### 3. FOCUS CONTROL Adjust the focus control, located on the high voltage unit (T1), for maximum over-all definition and fine picture detail. #### 4. HORIZONTAL HOLD CONTROL VR2 With the monitor being driven with the display signal, connect one jumper between TP1 and TP2 and another jumper between TP3 and TP4. Adjust the horizontal hold control until the picture stops sliding horizontally. Remove the jumpers. Do not use the horizontal hold control for horizontal centering. (See #5). NOTE: If the sync signal is composite, use the horizontal sync input of the same polarity as the composite sync signal. #### 5. HORIZONTAL VIDEO SHIFT CONTROL VR1 Use this control to center the picture horizontally. #### 6. HORIZONTAL RASTER POSITION ADJUSTMENT If the picture is off center horizontally (long dimension of picture tube), some compensation can be made by moving the horizontal raster position adjustment jumper either to positions "R" or "L". #### 7. HORIZONTAL SIZE COIL L1 The horizontal size coil is a hexagonal tuning tool adjustment. This control must be adjusted slowly, if necessary, until the picture or test pattern attains the correct horizontal proportions. #### 8. VERTICAL HOLD CONTROL VR5 Adjust this control until the picture stops rolling and it locks in vertically. #### 9.50-60 Hz CONTROL VR9 This control is used to limit the range of vertical size. This control is preset at the factory and should not require readjustment unless the vertical size control or vertical hold control are readjusted from their original factory setttings. In order to set this control, first adjust the vertical size control so that the picture is slightly larger than desired. Turn VR9 so that any vertical foldover which may be present will disappear. If the monitor is to be operated alternately at more than one vertical frequency, then perform this adjustment at the higher frequency. #### 10. VERTICAL SIZE CONTROL This control must be adjusted slowly, if necessary, until the picture or test pattern attains the correct vertical proportions. #### 11. VERTICAL RASTER POSITION CONTROL VR3 If the video is off center vertically, (short dimension of picture tube) some compensation can be made by turning the vertical raster position control. #### 12. CUT OFF AND DRIVE CONTROLS ON NECK BOARD VR201, VR202, VR203, VR204, VR205, VR206. These controls have been preset at the proper gray scale. Before adjusting any of these controls, refer to Trouble-shooting Note 4 and to the White Balance procedure. FIG. 1A FIG. 1B #### NOTE: All of the following procedures have been performed at the factory and should require no further attention. If the monitor is serviced for any reason, it should be observed afterward to determine whether any of these procedures need to be performed again. #### OUTLINE OF CONVERGENCE AND SET-UP PROCEDURE **DEGAUSSING:** Demagnetize the shadow mask and all surrounding metal parts with an external degaussing coil. PURITY: Adjust the purity magnets and the yoke position. STATIC CONVERGENCE: Converge Red and Blue on Green in the center of the screen. DYNAMIC CONVERGENCE: Converge Red and Blue at the edges of the screen. WHITE BALANCE: Set Gray and White brightness tracking. NOTE: Purity and convergence adjustment interact. #### DEGAUSSING The monitor is equipped with an automatic degaussing circuit. However, if the CRT shadow mask has become excessively magnetized, it may be necessary to degauss it with a manual coil. Do not switch the coil OFF while the raster shows any effect from the coil. #### COLOR PURITY ADJUSTMENT - 1 For best results, it is recommended that the purity adjustment be made in the final monitor location. If the monitor will be moved, perform this adjustment with it facing west or east. The monitor must have been operating 15 minutes prior to this procedure. - 2 On picture tubes with a 22.5 mm neck diameter, set the ring assembly on the CRT neck with the center line of the purity ring-pair over the gap between grids No. 5 and 6. See Fig. 2A [For picture tubes with a 29 mm neck, use the gap between grids No. 3 and 4. Fig. 2B.1 - 3 Make certain that the magnetic ring-pairs are in their correct starting positions before beginning this procedure. The correct starting position for the purity ring-pair is not necessarily the one shown in Figure 2. The correct starting position will vary from ring assemblies from one manufacturer to another. It will be necessary to determine the correct starting position-also known as the zero correction Figure 2 shows a ring assembly in which each of the rings of the purity ring-pair has two tabs-one long and one short. With some ring assemblies of this type, the zero correction position is with the long tab of one ring aligned with the short tab of the other ring. On other ring assemblies of this type, the zero correction position is with the long tab of one ring aligned with the long tab of the other ring. The way to determine which is which is by trying one of these orientations and then rotating the two rings together, as a pair, without changing their orientation with respect to each other. If this rotation of the ring-pair causes no change in the purity, then it is the zero correction position. If the purity does change, then try the other orientation. A third type of ring assembly has only one tab on each of the two purity rings. The zero correction position for this type of assembly is with the tabs of the two purity rings aligned with each other and pointing up toward the anode contact of the CRT. The correct starting positions for the other ring pairs are as shown in Figure 2. For the other type of ring assembly (not shown), the correct starting position for the other two ring-pairs is with all of the tabs aligned with each other and pointing up, toward the anode contact of the CRT. - 4 Vertical raster position control must be at the center of its rotation. - 5 Remove the R-G-B signal from the monitor. - 6 Turn the Green Cut off Control (VR203) on the Neck Board fully CW. (See Fig. 1). - 7 Turn the Red and Blue Cut off Controls (VR201 & VR205) fully CCW. - 8 Pull the Deflection Yoke backward so that the Green belt will appear. (See Fig. 4). - 9 Decrease the horizontal width of the raster, if necessary, in order to be able to see the right and left edges of the raster. - 10 Move the two Purity Magnets with respect to each other in order to center the Green belt on the raster horizontally. - 11 Push the Deflection Yoke forward gradually and fix it at the place where the Green screen becomes uniform throughout. - 12 Turn the cut off and Drive Controls and confirm that each color is uniform. - 13 If the color is not uniform, re-adjust it, moving the Purity Magnets slightly. - 14 Turn all three cut off controls fully counterclockwise (CCW). Slowly turn up (CW) the Red cutoff control until a Red raster is just barely visible. - 15 Slowly turn up the Green and Blue cutoff controls such that their associated colors, mixing with the Red, results in a White or Gray raster. - 16 Confirm that the white or gray color is uniform throughout the screen. - 17 Insert a wedge temporarily as shown in Fig. 4 and adjust the angle of the Deflection Yoke. #### STATIC CONVERGENCE ADJUSTMENT - 4-Pole Magnets and 6-Pole Magnets are for static convergence. - 1 A cross hatch signal should be connected to the monitor. - 2 A pair of 4-Pole Convergence Magnets is provided and adjusted to converge the blue and red beams (See Fig. 6). When the Pole opens to the left and right 45° symmetrically, the magnetic field maximizes. Red and blue beams move to the left and right (See Fig. 5). Variation of the angle between the tabs adjusts the convergence of red and blue vertical lines. - 3 When both 4-Pole Convergence Magnet Tabs are rotated as a pair, the convergence of the red and blue horizontal lines is adjusted. - 4 A pair of 6-Pole Convergence Magnets is also provided and adjusted to converge the magenta (red + blue) to green beams (See Fig. 6). When the Pole opens to the left and right 30° symmetrically, the magnetic field is maximized. Red and blue beams both move to the left and right (See Fig. 5). Variation of the opening angle adjusts the convergence of magenta to green vertical lines. - 5 When both 6-Pole Convergence Magnet Tabs are rotated as a pair, the convergence of magenta to green horizontal lines is adjusted. GREEN GUN IS THE CENTER GUN. CONVERGE THE RED AND BLUE. THEN CONVERGE RED AND BLUE ON GREEN. REPEAT 3.2 & 3.3 IF ALL LINES ARE NOT CONVERGED AT CENTER FIG. 5 #### PRECISE ADJUSTMENT OF DYNAMIC CONVERGENCE - 1 . Feed a cross hatch signal to the monitor. - 2. Insert wedge temporarily and fix the Deflection Yoke so as to obtain the best circumference convergence (See Fig. 8 and 9) NOTE: The wedges may need to be moved during adjustments. - 3. Insert three rubber wedges to the position as shown in - 1) Tilting the angle of the yoke up and down adjusts the crossover of both vertical and horizontal red and blue lines. See Fig. 8 (a) and (b). - 2) Tilting the angle of the yoke sideways adjusts the parallel convergence of both horizontal and vertical lines at the edges of the screen. See Fig. 9 (a) and (b). - 3) Use three rubber wedges (tapered rubber wedges are used for a purpose). - 4) The position of each rubber wedge is shown in Fig. 7. - 5) Do NOT force the permanent wedges in. They are to be inserted until they just make contact with the yoke-after the yoke has been positioned. - 6) Fix the three permanent rubber wedges with chloroprene rubber adhesive. - 7) After the adhesive has dried enough to hold the wedges in place, carefully remove the temporarily installed wedge. FIG. 7 INSERT RUBBER WEDGE FROM LOWER SIDE INSERT RUBBER WEDGE FROM LEFT SIDE INSERT RUBBER WEDGE FROM RIGHT SIDE FIG. 9 #### WHITE BALANCE - Equipment Required: An oscilloscope with a DC coupled mode in the vertical amplifier. - Referring to Fig. 1 and 3, do the following adjustments in subdued light after degaussing and setting the purity of the CRT - Ground the R/G/B video inputs. Apply sync signals to the sync inputs. - Set all three drive controls, VR202, VR204, & VR206, to their midpoints of rotation. - Set the screen and R/G/B cutoff controls to their minimum (fully CCW) positions. - Connect the oscilloscope to the collector of a video output transistor Q201, Q202, or Q203 or to the end of R207, R208, or R209 indicated on Figure 3 as Red, Green, or Blue. - 7. If this white balance procedure is required because the CRT or neck board was replaced, then leave the contrast control at its original setting. If the contrast control is known to be grossly out of adjustment, then set it to its center of rotation. Adjust the brightness control VR6 to obtain the waveform shown in Figure 10. Now remove the Scope Probe. - Slowly turn the screen control CW until the raster is just visible. The color of this raster is called the lead color gun. DO NOT adjust its associated cutoff control. It must remain fully CCW. - Adjust the screen control CCW until the raster is just extinguished. - Adjust the brightness control for a dim raster. Adjust the two remaining cutoff controls (NOT the lead color gun cutoff control) for best gray uniformity. - 11. Adjust the brightness control for a bright raster but not maximum brightness. Adjust the R/G drive controls, if necessary, for best neutral white. Try not to adjust the blue drive control. - 12. Repeat steps 10 and 11 until good tracking of white balance is achieved. End with step 10. - 13. With the oscilloscope connected to the collector of the lead color video output transistor (See Fig. 3), adjust the brightness control to obtain the waveform in Fig. 10. FIG. 10 # TYPICAL OSCILLOSCOPE WAVEFORM PATTERNS The waveforms shown below were observed on a wide band oscilloscope. The input signal was from a crosshatch generator with a horizontal sync frequency of 15.73kHz and a vertical frequency of 60 Hz. If the waveforms are observed on an oscilloscope with a limited high frequency response, the corners of the pulses will tend to be more rounded than those shown, and the amplitude of any high frequency pulse will tend to be less. Each photograph is numbered. These numbers correspond to the circled numbers on the schematic diagrams. Photographs 12, 13, 14, 15 and 16 are of the red signal at various points along the red video channel. The waveforms at corresponding points along the green and blue video channels will look similar. #### TROUBLESHOOTING NOTES - 1. The troubleshooting chart mentions specific components to be checked. It is intended that the entire circuit associated with these components be checked. - This chart is a guide to servicing rather than a complete list of each component that could fail. Therefore, troubleshooting should not be limited only to those components mentioned in the chart. - 3. It is always useful to begin checking a circuit by measuring the DC voltages and then comparing the measurements to those listed in the Typical DC Voltages chart. - 4. The cutoff controls and drive controls on the neck board and the screen control at the bottom of the flyback transformer have been preset at the factory. When servicing the monitor for a lack of video, do not adjust any of these controls unless it is suspected that the problem is a result of these controls having been tampered with. Otherwise do not adjust these controls; if they are so severely out of adjustment that there is a lack of video, then there is something malfunctioning. - 5. The Wells-Gardner Service Department does accept telephone calls for servicing assistance. Call 1-312-252-8220, between 7:00am and 3:30pm Central Time. Ask for the Service Department. The Service Department is closed during the first two weeks of July. Telephone assistance is not available during this period. Before calling, be sure to have available the model number of the monitor being serviced and the schematic diagram of the monitor being serviced. - Replacement parts may be ordered from the Service Department between 7:00am and 4:30pm Central Time. - 7. All monitors are equipped with automatic degaussing coils which demagnetize the picture tube every time the monitor is turned on after being off for a minimum of 20 minutes. Should any part of the chassis become magnetized it will be necessary to degauss the affected area with a manual degaussing coil. Move the coil slowly around the CRT face area and all surrounding metal parts. Then slowly withdraw for a distance of 6 feet before turning off. #### 8. Horizontal vs. Vertical: Some models have the picture tube mounted vertically rather than horizontally. That is, the picture tube is mounted in the frame such that the long dimension of the tube is up and down. Examples of this include (but are not limited to) Models 13K7851 and 19K7951. Other than the physical orientation of the picture tube, there is no electrical difference between these models and their horizontal counterparts. The same circuits, the vertical circuits, produce and control deflection along the short dimension of the tube in all models. The same circuits, the horizontal circuits, produce and control deflection along the long dimension of the tube in all models. Therefore, wherever "vertical" appears in this manual or on the monitor, it refers to the short dimension of the picture tube; wherever "horizontal" appears, it refers to the long dimension of the picture tube. # TROUBLESHOOTING CHART #### VIDEO INTERFACE AND OUTPUT The red, green, and blue video inputs come into the monitor at P1. Isolation and attenuation is provided by emitter followers Q1, Q2 and Q3. Forced blanking of the video signals is provided by the circuit of Q4, D5, D6, and D7. The forced blanking causes there to be an interruption in the video signal before it goes to the inputs of IC1. This interruption occurs between scan periods, while retrace is taking place; it is required by IC1. The forced blanking is not necessary for most video signals since they already have an interruption of video (blanking) between scan periods. Some do not; it is to accommodate such signals that the forced blanking circuit is included. The red, green, and blue signals go into IC1 at pins 2, 4, and 6. Their levels are controlled by the gain of separate channels of the contrast amplifier. The gain is controlled by a DC voltage input to pin 11, which varies with the setting of the contrast control. IC1 provides blanking of the video during retrace in response to blanking pulses at pin 13, derived from the horizontal and vertical sweep circuits. IC1 also requires a gating signal at pin 12 in order to provide red, green, and blue outputs at pins 21, 19, and 17. If the gating signal is not present, IC1 will not provide video output signals. The gating signal comes from IC2, pin 12 and is derived from horizontal sync. The brightness is varied by varying the DC level of the outputs at pins 17, 19, and 21. This is accomplished by varying the DC voltage input to pin 14. The video outputs from IC1 are provided via R30, R31, and R32 to the neck board where they are amplified by the video output stages Q201, Q202, and Q203 before being applied to the cathodes of the CRT through R10, R11, and R12. #### SYNC Sync is applied at P1 (positive sync) or at P2 (negative sync). Composite sync should be applied only to the horizontal sync input of the appropriate polarity. Positive sync is inverted by Q5 and Q6 then applied through D3, D4 and R51 to the sync amplifier Q7. The sync amplifier output is applied through C22, R53, and R55 to pin 14 of IC2. Pin 14 is the sync separation input. The sync separator extracts the horizontal and vertical sync from each other-providing horizontal sync to the horizontal AFC circuit in the IC. A composite sync output is provided at pin 12. This output signal is used for gating IC1 the video interface IC and for triggering the vertical oscillator. #### HORIZONTAL OSCILLATOR AND OUTPUT The horizontal AFC circuit of IC2 receives a horizontal sync input from the sync separator and a feedback signal at pin 1, derived from the horizontal output. Slight differences in frequency and phase of the two signals will cause the AFC to generate a correction voltage at pin 2. The horizontal oscillator in IC2 has its free running frequency determined by the RC time constant of C19, R56, R57, R58, and VR2, the horizontal hold control. The horizontal hold control varies the horizontal frequency by varying the RC time constant. Slight correction in frequency is provided by a correction voltage at IC2, pin 3 which comes from pin 2 through R60. The oscillator output at pin 4 is amplified and shaped by the horizontal drive stage Q10. The drive signal is then coupled to the base circuit of the horizontal output transistor Q11 by the horizontal drive transformer T2. T2 is used for impedance transformation to provide the Q11 base circuit with the low impedance source that it requires. The horizontal output transistor Q11 is operated as a switch. It is either on or off. It is turned on and off at the scan rate which is determined by the horizontal oscillator frequency which is ultimately determined by the incoming horizontal sync frequency. A yoke current with a sawtooth waveform is needed to deflect the beam linearly across the CRT. The beam begins at the center of the CRT and is deflected from center to right. This center-to-right deflection occurs when Q11 is turned on. The deflection yoke coupling capacitor C38, also known as the S-shaping capacitor, begins to discharge through the yoke; the discharge current causes the beam to be deflected to the right CRT edge. At this time, Q11 is turned off, and the current provided by C38 stops. As the current falls to zero, a voltage is induced across the yoke windings as the magnetic field collapses; an oscillation is produced by the voke windings and C36, the retrace tuning capacitor. During the first half cycle of oscillation, the induced voltage is impressed on the collector of Q11, C36, and the primary of they flyback transformer T1. This induced voltage is stepped up by the flyback transformer's secondary winding. This high voltage is then rectified and applied to the high voltage anode of the CRT. When this induced voltage occurs, the electron beam is deflected from the right edge of the CRT face to the left edge. This is called retrace. During the second half cycle of the oscillation (of C36 and the voke windings), the voltage at the Q11 collector tries to go negative or below ground. When this happens, the damper diode (include in same package with Q11) becomes forward biased. The conduction of the damper diode allows energy stored in the horizontal system to decay linearly to zero, thus allowing the beam to return to the center of the CRT face. The focus voltage and the screen, G2, voltage are obtained from the anode voltage with a resistor divider network within the T1 assembly. An auxiliary winding (pin 10) provides feedback to the horizontal AFC through R71, R70, and C29. This signal is also used to furnish the horizontal blanking input to IC1 via C28, R69, and R68. The signal from the auxiliary winding at pin 5 of T1 is rectified by D14 and filtered to provide the +12VDC supply for the video interface and sync circuits. The auxiliary winding of pins 3 and 4 produces a signal which is rectified by D13 and filtered to produce the +24VDC supply for the vertical output circuit. The horizontal linearity coil L2 is a magnetically biased coil which shapes the yoke current for optimum linearity. The horizontal size coil L1 is a variable series inductor which is used to vary the horizontal size of the display. #### HIGH VOLTAGE HOLD-DOWN CIRCUIT The high voltage hold down circuit is part of the main PC board P447 of this monitor. The +12V DC supply is sensed via D10. Since the +12V DC supply is flyback pulse derived, the +12V DC supply will rise as the high voltage rises. If the +12V DC exceeds a threshold which is set with VR8, then D12 will conduct, thereby providing drive to IC2, pin 5-holddown input of deflection oscillator IC. The drive being applied to pin 5 causes the horizontal oscillator within the IC to shut down-thus preventing the generation of high voltage. The horizontal oscillator will remain in its OFF state, even if the input to IC2, pin 5 is removed, unless and until AC power is removed from the monitor input. The power may then be reapplied. #### VERTICAL OSCILLATOR AND OUTPUT The composite sync ouput of IC2, pin 12 is filtered through the network of R65, C25, C24 and R66 so that only vertical sync is applied to the vertical trigger input at pin 11. The vertical oscillator frequency is controlled by the vertical hold control and its input to pin 10. The vertical drive output at IC2, pin 7 is applied to pin 4 of IC3, the vertical output IC. Output current from IC3, pin 2 flows through the yoke to cause vertical deflection. During upward deflection, current flows out of pin 2, through the yoke, and into C50 to charge it. Downward deflection is caused by C50 discharging through the yoke in the opposite direction and back into IC3, pin 2. AC feedback is provided through the wiper of the vertical size control VR4 to IC2, pin 8 in order to control the drive amplitude. DC feedback at IC2, pin 9 maintains good vertical linearity at all sizes. DC current from the +24V supply flows through R83 and through the yoke to provide downward raster shift. Some of this DC current is diverted from the yoke through the collector of Q9. The amount of this current which is diverted from the yoke can be varied by varying the base drive to Q9 by adjusting VR3, the vertical position control, thus providing manual adjustment of the vertical position of the display. The drive signal at IC3, pin 2 is also used to furnish the vertical #### AUTOMATIC DEGAUSSING ADG blanking input to IC1, pin 13 via R63 and C14. The ADG circuit automatically demagnetizes the CRT. This circuit is activated only when the monitor is initially powered up after having been off for at least 20 minutes. R105 is a positive temperature coefficient device. When it is cold, it has a very low resistance. As it gets warm, its resistance increases. If the monitor is cold when AC power is applied, then R105 with a low resistance allows current to pass through it, D23, D24, and the degaussing coil. As current flows through R105, it heats up and eventually has a very high resistance, allowing very little current to flow through it. The residual current now flowing through R105 produces a voltage drop across R104 of less than 0.6 volts. This is not enough to forward bias D23 and D24, so there is no current through the degaussing coil. The process of initially having a large current through the degaussing coil and then having the current decay to zero is what produces the degaussing action. The degaussing current decays to zero before the CRT warms up, so the degaussing is completed before the picture comes on. # K7000 COLOR MONITOR SCHEMATIC DIAGRAM # **GENERAL REPLACEMENT PARTS LIST** # For all K7000 models except where noted. This monitor contains circuits and components included specifically for safety purposes. For continued protection no changes should be made to the original design, and components shown in shaded areas of schematic, or $\triangle \bigstar$ on parts list should be replaced with exact factory replacement parts. The use of substitute parts may create a shock, fire, radiation or other hazard. Service should be performed by qualified personnel only. #### **P447 MAIN BOARD** | | Ref. No. | Part No. | Description | Ref. No. | Part No. | Description | |-----------|----------|--------------|-------------------|----------------|------------------------------|----------------------| | RESISTORS | | | | | RESISTORS | (Cont.) | | | R1 | 340X2562-934 | 5.6K Ohm 5% 0.25W | R59 | 340X2103-934 | 10K Ohm 5% 0.25W | | | R2 | 340X2562-934 | 5.6K Ohm 5% 0.25W | R60 | 340X2563-934 | 56K Ohm 5% 0.25W | | | R3 | 340X2562-934 | 5.6K Ohm 5% 0.25W | R61 | 340X2332-934 | 3.3K Ohm 5% 0.25W | | | R4 | 340X2472-934 | 4.7K Ohm 5% 0.25W | R62 | 340X2122-934 | 1.2K Ohm 5% 0.25W | | | R5 | 340X2472-934 | 4.7K Ohm 5% 0.25W | R63 | 340X2563-934 | 56K Ohm 5% 0.25W | | | R6 | 340X2472-934 | 4.7K Ohm 5% 0.25W | R64 | 340X2184-934 | 180K Ohm 5% 0.25W | | | R7 | 340X2333-934 | 33K Ohm 5% 0.25 | R65 | 340X2123-934 | | | | R8 | 340X2333-934 | 33K Ohm 5% 0.25 | R66 | 340X2123-934<br>340X2224-934 | 12K Ohm 5% 0.25W | | | R9 | 340X2333-934 | 33K Ohm 5% 0.25 | R67 | | 220K Ohm 5% 0.25W | | | R10 | 340X2151-934 | 150 Ohm 5% 0.25W | R68 | 340X2623-934 | 62K Ohm 5% 0.25W | | | R11 | 340X2151-934 | 150 Ohm 5% 0.25W | R69 | 340X2223-934 | 22K Ohm 5% 0.25W | | | R12 | 340X2151-934 | 150 Ohm 5% 0.25W | R70 | 340X3683-231 | 68K 5% 0.5W CAR | | | R13 | | | | 340X2682-934 | 6.8K Ohm 5% 0.25 | | | R14 | 340X2102-934 | 1.0K Ohm 5% 0.25W | R71 | 340X3473-234 | 47K 5% 0.5W | | | | 340X2102-934 | 1.0K Ohm 5% 0.25W | R72 | 340X2101-934 | 100 Ohm 5% 0.25W | | | R15 | 340X2102-934 | 1.0K Ohm 5% 0.25W | R73 | 340X2103-934 | 10K Ohm 5% 0.25W | | | R16 | 340X2822-934 | 8.2K Ohm 5% 0.25W | R74 | 340X2220-934 | 22 Ohm 5% 0.25W | | | R17 | 340X2822-934 | 8.2K Ohm 5% 0.25W | R75 | 340X2222-934 | 2.2K Ohm 5% 0.25W | | | R18 | 340X2152-934 | 1.5K Ohm 5% 0.25W | R76 | 340X2473-934 | 47K Ohm 5% 0.25W | | | R19 | 340X2103-934 | 10K Ohm 5% 0.25W | R77 | 340X2333-934 | 33K Ohm 5% 0.25 | | | R20 | 340X2102-934 | 1.0K Ohm 5% 0.25W | R78 | 340X2102-934 | 1.0K Ohm 5% 0.25W | | | R21 | 340X2563-934 | 56K Ohm 5% 0.25W | R80 | 340X3056-934 | 5.6 5% 0.5W | | | R22 | 340X2562-934 | 5.6K Ohm 5% 0.25W | R81 | 340X2150-934 | 15 Ohm 5% 0.25W | | | R23 | 340X2102-934 | 1.0K Ohm 5% 0.25W | R82 | 340X3821-934 | 820 Ohm 5% 0.5W | | | R24 | 340X2224-934 | 220K Ohm 5% 0.25W | R83 | 340X3681-934 | 680 Ohm 5% 0.5W | | | R25 | 340X2273-934 | 27K Ohm 5% 0.25W | R84 | 340X2682-934 | 6.8K Ohm 5% 0.25 | | | R26 | 340X2822-934 | 8.2K Ohm 5% 0.25W | R85 | 340X2332-934 | 3.3K Ohm 5% 0.25W | | | R27 | 340X2223-934 | 22K Ohm 5% 0.25W | R86 | 340X2224-934 | 220K Ohm 5% 0.25W | | | R28 | 340X2332-934 | 3.3K Ohm 5% 0.25W | R87 | 340X3334-844 | 330K 10% 0.5W | | | R29 | 340X2103-934 | 10K Ohm 5% 0.25W | R88 | 340X4182-633 | 1.8K 5% 1W | | | R30 | 340X2101-934 | 100 Ohm 5% 0.25W | ★R89 | 043X0476-002 | 3.9K 5% 5W MO | | | R31 | 340X2101-934 | 100 Ohm 5% 0.25W | R90 | 043X0486-002 | 1.2 5% 2W MF | | | R32 | 340X2101-934 | 100 Ohm 5% 0.25W | R91 | 043X0486-002 | 1.2 5% 2W MF | | | R33 | 340X2102-934 | 1.0K Ohm 5% 0.25W | R92 | 043X0486-002 | 1.2 5% 2W MF | | | R34 | 340X2102-934 | 1.0K Ohm 5% 0.25W | R93 | 420X5102-324 | 1.0K 5% 2W | | | R35 | 340X2102-934 | 1.0K Ohm 5% 0.25W | R94 | 340X2473-934 | 47K Ohm 5% 0.25W | | | R36 | 340X2122-934 | 1.2K Ohm 5% 0.25W | R95 | 340X2473-934 | 47K Ohm 5% 0.25W | | | R37 | 340X2822-934 | 8.2K Ohm 5% 0.25W | R96 | 420X6182-325 | 1.8K Ohm 5% 3W. WW | | | R38 | 340X2122-934 | 1.2K Ohm 5% 0.25W | R97 | 420X6271-325 | 270 5% 3W | | | R39 | 340X2122-934 | 1.2K Ohm 5% 0.25W | R98 | 340X4222-633 | 2.2K Ohm 5% 1W | | | R40 | 340X2102-934 | 1.0K Ohm 5% 0.25W | R99 | 340X4222-633 | 2.2K Ohm 5% 1W | | | R41 | 340X2102-934 | 1.0K Ohm 5% 0.25W | R100 | 340X4271-633 | 270 5% 1W | | | R42 | 340X2473-934 | 47K Ohm 5% 0.25W | R101 | 420X6682-325 | | | | R43 | 340X2222-934 | 2.2K Ohm 5% 0.25W | R102 | | 6.8K 5% 3W | | | R44 | 340X2104-934 | 100K Ohm 5% 0.25W | <b>△</b> ★R103 | 340X4470-633 | 47 5% 1W | | | R45 | 340X2104-934 | 100K Ohm 5% 0.25W | | 043X0483-001 | 2.7 Ohm 5% 7W | | | R46 | 340X2101-934 | 100 Ohm 5% 0.25W | R104 | 043X0484-001 | 15 Ohm 5% 5W | | | R47 | 340X2101-934 | 100 Ohm 5% 0.25W | R105 | 043X0485-001 | Thermister | | | R48 | 340X2101-934 | 1.0K Ohm 5% 0.25W | R106 | 340X2273-934 | 27K Ohm 5% 0.25W | | | R49 | 340X2102-934 | | R107 | 340X2102-934 | 1.0K Ohm 5% 0.25W | | | R50 | | 1.0K Ohm 5% 0.25W | R301 | 043X0481-003 | 220 Ohm 15W WW | | | | 340X2103-934 | 10K Ohm 5% 0.25W | VR1 | 040X0653-002 | CTRL 500 | | | R51 | 340X2103-934 | 10K Ohm 5% 0.25W | VR2 | 040X0653-005 | CTRL 10K | | | R52 | 340X2102-934 | 1.0K Ohm 5% 0.25W | VR3 | 040X0653-005 | CTRL 10K | | | R53 | 340X2151-934 | 150 Ohm 5% 0.25W | VR4 | 040X0653-001 | CTRL 200 | | | R54 | 340X2224-934 | 220K Ohm 5% 0.25W | VR5 | 040X0653-006 | CTRL 200K | | | R55 | 340X2101-934 | 100 Ohm 5% 0.25W | VR6 | 040X0653-003 | CTRL 2K | | | R56 | 340X2472-934 | 4.7K Ohm 5% 0.25W | VR7 | 040X0653-005 | CTRL 10K | | | R57 | 340X2182-934 | 1.8K Ohm 5% 0.25W | ★VR8 | 040X0639-006 | Trim Pot 2K Ohm 0.3W | | | R58 | 340X2123-934 | 12K Ohm 5% 0.25W | VR9 | 040X0655-001 | Trim Pot 200 Ohm | | | | | | | | | # REPLACEMENT PARTS LIST # P447 MAIN BOARD (CONT.) | CAPACITORS C1 | Ref. No. | Part No. | Description | Ref. No. | Part No. | Description | |-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------|-------------------------|------------------|--------------|-------------------------| | C1 080X0090-871 Disc 29F 10% NPO D1 066X0070-001 Diode 1N914B C3 080X0090-01 Diode 1N914B C3 080X0090-01 Diode 1N914B C3 080X0090-01 Diode 1N914B C4 045X0577-501 Disc 22F 10% NPO D3 066X0070-001 Diode 1N914B C4 045X0577-501 Diode 1N914B C5 045X0560-531 Diode 1N914B C5 045X0560-531 Diode 1N914B C5 045X0560-534 045X056 | | CAPAC | CITORS | : | SEMICOND | UCTORS | | C2 | 01 | | | D1 | | | | C3 | | | | | | | | C4 045X0577-501 Elect 10MF NP 25V D4 068X0070-001 Diode 1N914B C6 045X0577-501 Elect 10MF NP 25V D5 068X0070-001 Diode 1N914B C6 045X0577-501 Elect 10MF NP 25V D7 068X0070-001 Diode 1N914B C7 047X0786-602 MFN 0.22 10% 50V D7 068X0070-001 Diode 1N914B C9 047X0786-002 MFN 0.22 10% 50V D8 068X0070-001 Diode 1N914B C9 047X0786-002 MFN 0.22 10% 50V D9 088X0070-001 Diode 1N914B C10 045X0560-531 Elect 20MF 25V D10 D9 068X0070-001 Diode 1N914B C11 045X0560-534 Elect 23MF 16V D10 068X0040-002 Zener Diode 51 V 5% 0.5W C12 045X0560-534 Elect 22MF 25V D11 068X0040-002 Zener Diode 51 V 5% 0.5W C13 045X0560-534 Elect 22MF 25V D11 068X0040-002 Zener Diode 51 V 5% 0.5W C14 047X0786-01 V 47X0786-01 47X078 | | | | | | | | C6 045X0577-801 Elect 10MF NP 28V D6 085X0070-001 Diode 1N914B C6 045X0577-801 Elect 10MF NP 28V D6 085X0070-001 Diode 1N914B C7 047X0786-502 MFN 0.022 10% 50V D7 086X0070-001 Diode 1N914B Diode 1N914B C7 047X0786-502 MFN 0.022 10% 50V D8 085X0070-001 Diode 1N914B C7 047X0786-502 MFN 0.022 10% 50V D8 085X0070-001 Diode 1N914B C7 047X0786-502 MFN 0.022 10% 50V D8 085X0070-001 Diode 1N914B C7 047X0786-502 MFN 0.022 10% 50V D9 085X0070-001 Diode 1N914B C7 047X0786-502 MFN 0.022 10% 50V D9 085X0070-001 Diode 1N914B C7 047X0786-502 MFN 0.022 10% 50V D9 10 085X0040-0028 Zener Diode 5 V 5% 0.5W C7 047X0786-502 MFN 0.022 10% 50V D112 085X0040-0028 Zener Diode 5 V 5% 0.5W C7 047X0786-502 MFN 0.022 10% 50V D114 085X0040-001 D1 Fast 5W RU-2 C15 047X0786-502 MFN 0.022 10% 50V D114 085X00500-001 D1 Fast 5W RU-2 C16 047X0786-502 MFN 0.022 10% 50V D114 085X00500-001 D1 Fast 5W RU-2 C16 047X0786-502 MFN 0.022 10% 50V D117 085X00500-001 D1 Fast 5W RU-2 C16 047X0786-502 MFN 0.022 10% 50V D117 085X00500-001 D1 Fast 5W RU-2 C16 047X0786-501 MFN 1.10 50V D117 085X00500-001 D1 Fast 5W RU-2 C16 047X0786-501 MFN 1.10 50V D117 085X00500-001 D1 Fast 5W RU-2 C16 047X0786-501 MFN 1.10 50V D117 085X00500-001 D1 Fast 5W RU-2 C16 047X0786-501 MFN 1.10 50V D117 085X00500-001 D1 Fast 5W RU-2 C16 047X0786-501 MFN 1.10 50V D117 085X005000-001 D1 Fast 5W RU-2 C16 047X0786-501 MFN 1.10 Fast 5W PL-2 PL | | | | | | | | C6 045X0577-501 Elact 10MF NP 25V D6 066X077-001 Diode 1N914B D6 10 045X0560-510 MF 0.022 10% 50V D7 066X077-001 Diode 1N914B D6 1N914B D6 1N914B D7 066X077-001 Diode 1N914B D6 1N914B D7 066X077-001 Diode 066X0 | | | | | | | | C7 047X0786-502 MYR. 022-10%-50V D8 066X070-001 Diode IN914B C8 047X0786-502 MYR. 022-10%-50V D8 066X070-001 Diode IN914B C9 047X0786-502 MYR. 022-10%-50V D9 066X070-001 Diode IN914B C1 045X0560-531 Elect 33MF 16V D10 069X070-001 Diode IN914B C1 045X0560-531 Elect 33MF 16V D10 069X070-001 Diode IN914B C1 045X0560-534 Elect 23MF 25V D112 069X0040-001 D16de IN914B C1 045X0560-534 Elect 23MF 25V D112 069X0040-001 D16de IN914B C1 045X0560-534 Elect 23MF 25V D112 069X0040-001 D16de IN914B C1 045X0560-534 Elect 23MF 25V D112 069X0040-001 D17 Elect 25V S90.5W D13 069X0090-001 D17 Elect 25V S90.5W D15 D16de S1 A 600V | | | Elect 10MF NP 25V | | | | | CB 047X0786-502 MYR 022 10%-50V DB 066X070-001 Diode IN914B DC 10 045X0560-531 Elect 33MF 16V DD 9 066X070-001 Diode IN914B DC 10 045X0560-531 Elect 33MF 16V DD 10 066X070-001 Diode IN914B DC 11 045X0560-531 Elect 33MF 16V DD 11 066X070-001 Diode IN914B DC 11 045X0560-534 Elect 23MF 25V DD 11 066X0040-02E Zener Diode 5 IV 5% 0.5W DD 12 066X0040-02E Zener Diode 10V 5% 0.5W DD 12 066X0040-001 | | | | | | | | C9 047X0786-502 MYR 022 10% 50V D9 066X0070-001 Diode IN914B C11 045X0560-534 Elect 22MF 25V D10 066X0070-001 Diode IN914B C11 045X0560-534 Elect 22MF 25V D11 066X0040-005 Zener Diode 10V 5% 0.5W D12 066X0040-005 Zener Diode 10V 5% 0.5W D12 066X0040-005 Zener Diode 10V 5% 0.5W D13 066X0090-001 D1 Fast SW RU-2 045X0560-534 Elect 22MF 25V D13 066X0090-001 D1 Fast SW RU-2 045X0560-534 Elect 22MF 25V D13 066X0090-001 D1 Fast SW RU-2 045X0560-534 Elect 22MF 25V D13 066X0090-001 D1 Fast SW RU-2 045X0560-534 Elect 22MF 25V D13 066X0090-001 D1 Fast SW RU-2 045X0560-534 Elect 22MF 25V D17 066X0090-001 D1 Fast SW RU-2 045X0560-534 Elect 22MF 25V D17 066X0090-001 D1 Fast SW RU-2 045X0560-534 LVT 1.0UF 50V D18 066X0090-001 D1 Fast SW RU-2 045X0560-534 LVT 1.0UF 50V D18 066X0090-001 D1 Fast SW RU-2 045X0560-534 LVT 1.0UF 50V D19 066X0091-001 D16de S174 60DV 022 045X0560-534 LVT 1.0UF 25V D19 066X0091-001 D16de S174 60DV 022 045X0560-534 LVT 1.0UF 25V D20 066X0091-001 D16de S174 60DV 022 045X0560-534 LVT 1.0UF 25V D20 066X0091-001 D16de S174 60DV 022 045X0560-534 LVT 1.0UF 25V D22 066X0091-001 D16de S174 60DV 022 045X0560-534 LVT 1.0UF 25V D22 066X0091-001 D16de S174 60DV 022 045X0560-534 LVT 1.0UF 25V D22 066X0091-001 D16de S174 60DV 022 045X0560-534 LVT 1.0UF 25V D22 066X0091-001 D16de S174 60DV 022 045X0560-534 LVT 1.0UF 25V D22 066X0091-001 D16de S174 60DV 022 045X0560-534 LVT 1.0UF 25V D22 066X0091-001 D16de S174 60DV 022 045X0560-534 LVT 1.0UF 25V D22 066X0091-001 D16de S174 60DV 022 045X0560-534 LVT 1.0UF 25V D22 066X0091-001 D16de S174 60DV 022 045X0560-534 LVT 1.0UF 25V D22 066X0091-001 D16de S174 60DV 022 045X0560-534 LVT 1.0UF 25V D22 066X0091-001 D16de S174 60DV 022 045X0560-534 LVT 1.0UF 25V D22 066X0091-001 D16de S174 60DV 022 045X0560-534 LVT 1.0UF 25V D22 066X0091-001 D16de S174 60DV 022 045X0560-534 LVT 1.0UF 25V D22 066X0091-001 D16de S174 60DV 022 045X0560-534 LVT 1.0UF 25V D22 045X0 | | | | | | | | C10 | | | | | | | | C11 045X0560-534 Elect 22MF 25V D11 066X004-0.028 Zener Diode 5.1V 5% 0.5W C12 045X0560-514 LYT 1.0UF 50V D12 066X004-0.005 Zener Diode 1.0V 5% 0.5W C13 045X0560-534 Elect 22MF 25V D13 066X009-0.01 D1 Fast SW RU-2 C14 045X0786-502 MYR. 022 10% 50V D14 066X009-0.01 D1 Fast SW RU-2 C15 047X0786-502 MYR. 022 10% 50V D14 066X009-0.01 D1 Fast SW RU-2 C15 047X0786-502 MYR. 022 10% 50V D17 066X009-0.01 D1 Fast SW RU-2 C16 047X0786-501 MYR. 022 10% 50V D17 066X009-0.01 D1 Fast SW RU-2 C17 047X0786-501 MYR. 022 10% 50V D17 066X009-0.01 D1 Fast SW RU-2 C17 047X0786-501 MYR. 022 10% 50V D17 066X009-0.01 D1 Fast SW RU-2 C17 047X0786-501 MYR. 022 10% 50V D17 066X009-0.01 D1 Fast SW RU-2 C17 047X0786-501 MYR. 022 10% 50V D18 066X009-0.01 069X09-0.01 D18 069X 069X D18 069X09-0.01 D18 069X D18 069X D18 069X D18 069X D18 069X D18 069X D18 069X09-0.01 D18 069X D1 | | | | | | | | C12 | | | | | | | | C12 045X0580-534 Elect 22MF 25V D13 066X0090-001 D1 Fast SW RU-2 C14 047X0788-502 MYR, 022 10% 50V D15 066X0090-001 D1 Fast SW RU-2 C15 047X0788-502 MYR, 022 10% 50V D15 066X0090-001 D1 Fast SW RU-2 C16 047X0788-501 MYR, 11 0Ps 50V D16 066X0090-001 D1 Fast SW RU-2 C17 047X0788-501 .010UF 10% 50V D16 066X0090-001 D1 Fast SW RU-2 C18 045X0560-514 LTT 1.0UF 50V D18 066X0090-001 D1 Fast SW RU-2 C18 045X0560-514 LTT 1.0UF 50V D18 066X0091-001 D10 D19 Fast SW RU-2 C19 046X0550-502 PP .0056 2% AWS 50V D19 066X0091-001 D10 D19 Fast SW RU-2 C19 046X0550-502 PP .0056 2% AWS 50V D19 066X0091-001 D10 D19 Fast SW RU-2 C19 045X0560-518 LTT 10UF 25V D19 066X0091-001 D10 D19 Fast SW RU-2 C19 045X0560-518 LTT 10UF 25V D19 066X0091-001 D10 D19 Fast SW RU-2 C19 045X0560-518 LTT 10UF 25V D19 06X0091-001 D10 D19 D19 Fast SW RU-2 C19 045X0560-518 LTT 10UF 25V D19 D19 06X0091-001 D10 D19 | | | | | | | | C14 | | | | | | | | C15 | | | | | | | | C16 | | | | | | | | C17 | | | | | | | | C18 | | | | | | | | C19 048X0550-502 PP .0058 2% AWS 50V | | | | | | | | C20 | | | | | | | | C22 04\$X0560-514 LYT 1.0UF 50V | | | PP .0056 2% AWS 50V | A D30 | | | | C22 04\$X0560-514 LYT 1.0UF 50V | | | | A D20 | | | | C23 | | 045X0560-518 | | A D21 | | | | C24 047X0786-903 MYR.088 10% 50V D25 066X0089-001 D1 Boost C25 047X0786-512 MYR.10% 50V D25 066X0089-001 D1 Boost D1 Boost C26 047X0786-511 Myr.110% 50V D25 066X0089-001 D1 Boost TRSTR NPN 2N3904 C27 080X0099-557 Disc 220 10% 25F O2 086X0113-501 TRSTR NPN 2N3904 C28 080X0098-548 SPF 20% 2KV NPP-Estr Q4 086X0113-501 TRSTR NPN 2N3904 C29 047X0786-501 D100 120% 25F 500V Q6 086X0113-501 TRSTR NPN 2N3904 C30 080X0099-505 Disc 001 20% 25F 500V Q6 086X0113-501 TRSTR NPN 2N3904 C31 047X0786-501 D100 120% 25F 500V Q6 086X0113-501 TRSTR NPN 2N3904 C31 047X0786-501 D100 100 50V P-Estr Q7 086X0113-501 TRSTR NPN 2N3904 C32 080X0099-505 Disc 010 10% 25F 500V Q6 086X0113-501 TRSTR NPN 2N3904 C32 080X0099-722 Disc 003 10% YSP 500V Q8 086X0113-501 TRSTR NPN 2N3904 C32 080X0099-722 Disc 003 10% YSP 500V Q8 086X0113-501 TRSTR NPN 2N3904 C34 080X0099-722 Disc 003 10% YSP 500V Q9 086X0113-501 TRSTR NPN 2N3904 C34 080X0099-722 Disc 003 10% YSP 500V Q9 086X0113-501 TRSTR NPN 2N3904 C34 080X0099-722 Disc 003 10% YSP 500V Q10 086X0113-501 TRSTR NPN 2N3904 C34 080X0099-722 Disc 003 10% YSP 500V Q10 086X0113-501 TRSTR NPN 2N3904 C35 047X0786-501 Disc 001 10% YSP 500V Q10 086X0113-501 TRSTR NPN 2N3904 C35 047X0786-501 PP 6100 2% 1500V C11 086X0180-001 TRSTR NPN 2N3904 C35 047X0786-501 PP 6100 2% 1500V C11 086X0180-001 TRSTR NPN 2N3904 C36 046X054-005 TS 15 100V PP C12 086X0187-001 IC VertOutput UPC1378 C41 080X0099-505 Disc 001 20% 25F 500V A+IC4 080X0099-703 Disc 002 210% YSP 500V P-Estr 016X0182-001 PIug Header Disc 001 20% 25F 500V D100 200 200 200 200 | | | | | | | | C25 | | | | | | | | C26 047X0786-511 Myr. 1 10% 50V Q2 088X0113-501 TRSTR NPN 2N3904 C27 080X0099-567 Disc 220 10% Z5F Q2 Q2 08X0113-501 TRSTR NPN 2N3904 C28 080X0098-648 5PF 20% 2KV NPO Q2 088X0113-501 TRSTR NPN 2N3904 C29 047X0786-501 0.10UF 10% 50V P-Estr Q4 088X0113-501 TRSTR NPN 2N3904 C30 080X0099-505 Disc 001 20% Z5F 500V Q5 080X0113-501 TRSTR NPN 2N3904 C31 047X0786-501 0.10UF 10% 50V P-Estr Q6 080X0113-501 TRSTR NPN 2N3904 C31 047X0786-501 0.10UF 10% 50V P-Estr Q6 080X0113-501 TRSTR NPN 2N3904 C32 080X0099-580 Disc 100 10% Z5F 500V Q7 086X0113-501 TRSTR NPN 2N3904 C32 080X0099-722 Disc .0033 10% Y5P 500V Q8 086X0113-501 TRSTR NPN 2N3904 C34 080X0099-722 Disc .0033 10% Y5P 500V Q9 086X0113-501 TRSTR NPN 2N3904 C35 047X0786-501 Disc .0110% Y5P 500V Q9 086X0113-501 TRSTR NPN 2N3904 C35 047X0786-501 Disc .0110% Y5P 500V Q9 086X0113-501 TRSTR NPN 2N3904 C35 047X0786-501 Disc .0110% Y5P 500V Q11 086X0185-501 TRSTR NPN 2N3904 C35 047X0786-501 Disc .0110% Y5P 500V Q11 086X0185-501 TRSTR NPN 2N3904 C35 047X0786-501 Disc .0110% Y5P 500V Q11 086X0185-501 TRSTR NPN CC C45 045X0560-033 Elect 2200 35V D1C .0100 Y5P 500V P-Estr C40 045X0560-033 Elect 2200 35V D1C .0100 Y5P 500V | | 047X0786-503 | MYR .068 10% 50V | | | | | C27 G80X0099-567 Disc 220 10% Z5F O3 G86X0113-501 TRSTR NPN 2N3904 C28 G80X0098-048 SFP 20% 2KV NPO G3 G86X0113-501 TRSTR NPN 2N3904 C29 G47X0786-501 O10UF 10% 50V P-Estr G4 G86X0113-501 TRSTR NPN 2N3904 C30 G80X0099-505 Disc .001 20% Z5F 500V G5 G86X0113-501 TRSTR NPN 2N3904 C31 G47X0786-501 O10UF 10% 50V P-Estr G6 G86X0113-501 TRSTR NPN 2N3904 C32 G80X0099-580 Disc 100 10% Z5F 500V G7 G86X0113-501 TRSTR NPN 2N3904 C32 G80X0099-220 Disc .0033 10% Y5P 500V G8 G86X0113-501 TRSTR NPN 2N3904 C32 G80X0099-221 Disc .0033 10% Y5P 500V G8 G86X0113-501 TRSTR NPN 2N3904 C32 G80X0099-220 Disc .0033 10% Y5P 500V G8 G86X0113-501 TRSTR NPN 2N3904 C32 G80X0099-221 Disc .01 10% Y5P 500V G9 G86X0113-501 TRSTR NPN 2N3904 C32 G80X0099-221 Disc .01 10% Y5P 500V G9 G86X0113-501 TRSTR NPN 2N3904 C32 G46X0544-003 PP 6100 2% 1500V C11 G86X0190-001 TRSTR NPN CC TRSTR NPN 2N3904 C33 G46X0544-003 PP 6100 2% 1500V C11 G86X0189-001 TRSTR SD1398 C33 G46X0580-048 S99UF 5% 200V PP C2 G86X0187-001 TRSTR NPN 2N3904 C33 G46X0580-048 S99UF 5% 200V PP C2 G86X0187-001 TRSTR NPN 2N3904 C34 G80X0580-048 S99UF 5% 200V PP C2 G86X0187-001 C4 | C25 | 047X0786-512 | P-Ester .015 10% 50V | | | | | C28 | | 047X0786-511 | Myr.1 10% 50V | | | | | C29 | C27 | 080X0099-557 | Disc 220 10% Z5F | | | | | C30 080X099-505 Disc .001 20% Z5F 500V Q6 086X0113-501 TRSTR NPN 2N3904 C31 047X0786-501 .010UF 10% 50V P-Estr Q6 086X0113-501 TRSTR NPN 2N3904 C32 080X0099-580 Disc .00 10% Z5F 500V Q7 086X0113-501 TRSTR NPN 2N3904 C33 080X0099-722 Disc .0033 10% Y5P 500V Q8 086X0113-501 TRSTR NPN 2N3904 C33 080X0099-722 Disc .00 33 10% Y5P 500V Q9 086X0113-501 TRSTR NPN 2N3904 C33 080X0099-221 Disc .01 10% Y5P 500V Q9 086X0113-501 TRSTR NPN 2N3904 C35 047X0786-501 .010UF 10% 50V P-Estr Q10 086X0185-501 TRSTR NPN 2N3904 C35 047X0786-501 .010UF 10% 50V P-Estr Q10 086X0185-501 TRSTR NPN 2N3904 C37 046X0551-003 PP 6100 2% 1500V IC1 086X0190-001 TRSTR SD1398 C37 046X0536-046 .39UF 5% 200V PP IC2 086X0187-001 IC Video UPC1397 NEC C40 045X0560-033 Elect 2200 35V IC3 086X0189-001 IC Vert Cutput UPC1378 C41 080X099-505 Disc .001 20% Z5F 500V ∆★IC4 086X0189-001 IC Vert Cutput UPC1378 C42 045X0560-006 LYT 1000UF 16V C43 080X0099-505 Disc .001 20% Z5F 500V A±IC4 086X0188-001 Regulator IC STR3123 C44 046X0544-009 .110% 100V P-Prop TRANSFORMERS AND COILS C47 080X099-580 Disc .001 20% Z5F 500V A±IC4 098285-001 C3 UVT 470UF 16V A99 047X0786-501 .010UF 10% 50V P-Estr T2 0994285-001 C3 UVT 470UF 16V C51 045X0550-023 LYT 470UF 16V A99 047X0786-501 .010UF 10% 50V P-Estr T2 052X0131-001 Transf Flyback C54 047X0786-515 MYR .022 5% 500V AVT C55 045X0550-023 LYT 1000UF 25V C51 045X0550-023 LYT 1000UF 25V C51 045X0550-023 LYT 1000UF 25V C51 045X0550-023 LYT 1000UF 25V C55 045X0569-01 Elect 500 200V AFI 010 Flow C55 045X0569-01 Elect 500 200V AFI 016X0182-001 Fluse Clip C57 045X0569-01 Elect 500 200V AFI 010 Fluse Clip C57 045X0569-01 Elect 500 200V AFI 010 Fluse Clip C57 045X0569-01 Elect 500 200V AFI 010 Fluse Clip C57 045X0569-01 Elect 500 200V AFI 010 Fluse Clip C57 045X0569-01 Elect 500 200V AFI 010 Fluse Clip C57 045X0569-01 Elect 500 200V AFI 010 600 600 600 PLIP Header Disc .002 10% Y5P 500V P2 006A0428-001 Plug Header Disc .002 10% Y5P 500V P3 006A0428-001 Plug Header Disc .002 10% Y5P 500V P4 006A0406-001 Plug 4-Pin OSHIMA PID AFI 010 Fluse | C28 | 080X0098-048 | 5PF 20% 2KV NPO | | | | | C31 047X0786-501 .010UF 10% 50V P-Estr Q7 086X0113-501 TRSTR NPN 2N3904 C32 080X0099-580 Disc 100 10% Z5F 500V Q8 086X0113-501 TRSTR NPN 2N3904 C33 080X0099-722 Disc .0033 10% Y5P 500V Q9 086X0113-501 TRSTR NPN 2N3904 C34 080X0099-221 Disc .0033 10% Y5P 500V Q9 086X0113-501 TRSTR NPN 2N3904 C35 047X0786-501 ,010UF 10% 50V P-Estr Q10 086X018-501 TRSTR NPN 2N3904 C35 047X0786-501 ,010UF 10% 50V P-Estr Q11 086X0180-001 TRSTR NPN 2N3904 C35 046X0551-003 PP 6100 2% 1500V Q11 086X0180-001 TRSTR NPN 2N3904 C35 046X0536-046 .39UF 5% 200V PP | C29 | 047X0786-501 | .010UF 10% 50V P-Estr | | | | | C32 080X0099-580 Disc 100 10% 25F 500V Q8 086X0113-501 TRSTR NPN 2N3904 C33 080X0099-722 Disc 0.033 10% Y5F 500V Q9 086X0113-501 TRSTR NPN 2N3904 C34 080X0099-221 Disc 0.010% Y5F 500V Q9 086X0113-501 TRSTR NPN 2N3904 C35 047X0786-501 Q10 Q9 086X0113-501 TRSTR NPN 2N3904 C35 047X0786-501 Q10 Q9 | C30 | 080X0099-505 | Disc .001 20% Z5F 500V | | | | | C33 | C31 | 047X0786-501 | .010UF 10% 50V P-Estr | | | | | C34 | C32 | 080X0099-580 | Disc 100 10% Z5F 500V | | | | | C35 | C33 | 080X0099-722 | Disc .0033 10% Y5P 500V | | | | | C36 | C34 | 080X0099-221 | Disc .01 10% Y5P 500V | | | | | A ★ C36 046X0551-003 PP 6100 2% 1500V QT1 086X0180-001 IRSTR 2501393 IRSTR 2501393 NEC ★ C37 046X0544-005 .15 100V PP IC1 086X0187-001 IC Video UPC1397 NEC IC Video UPC1397 NEC IC Vert Output UPC1378 C40 045X0560-033 Elect 2200 35V A ★ IC4 086X0188-001 IC Vert Output UPC1378 Regulator IC STR3123 Let To Call Winch IC Vert Output UPC1378 Let To Call Winch IC Vert Output UPC1378 | C35 | 047X0786-501 | , .010UF 10% 50V P-Estr | | | | | C38 | <b>△</b> ★C36 | 046X0551-003 | PP 6100 2% 1500V | | | | | C40 C40 C41 C42 C42 C42 C43 C44 C44 C45X0560-006 C47 C44 C45X0560-006 C47 C49 C49 C49 C49 C49 C49 C49 | C37 | 046X0544-005 | .15 100V PP | | | | | C41 080X0099-505 Disc .001 20% Z5F 500V C42 045X0560-006 LYT 1000UF 16V C43 080X0099-505 Disc .001 20% Z5F 500V C44 046X0544-009 J10% C01 20% Z5F 500V C45 045X0560-020 LYT 470UF 16V C46 045X0560-020 LYT 470UF 16V C47 080X0099-580 Disc 100 10% Z5F 500V C48 045X0560-532 Elect 100MF 35V C49 047X0786-501 J10UF 10% 50V P-Estr C50 045X0560-023 LYT 1000UF 25V C51 045X0552-512 Tan .68 10% 35V C52 047X0786-501 J10UF 10& 50V P-Estr C53 047X0786-501 J01UF 10& 50V P-Estr C54 045X05569-008 LYT 22UF 160V C55 045X0559-008 LYT 22UF 160V C56 045X0569-01 Elect 560 200V C57 045X0569-011 Elect 47 160V □ P1 006A0428-001 Plug Header △ C59 080X0099-724 Disc .0015 10% Y5P 500V △ C61 080X0099-723 Disc .0022 10% Y5P 500V △ C61 080X0099-723 Disc .0022 10% Y5P 500V △ C62 045X0550-001 J1 20% 125VAC △ C62 046X0552-001 C60 080X0099-723 Disc .0022 10% Y5P 500V □ C62 046X0552-001 J1 20% 125VAC □ C63 046X0552-001 J1 20% 125VAC □ C64 046X0552-001 J1 20% 125VAC □ C65 046X0552-001 J1 20% 125VAC □ C66 068X0552-001 J1 20% 125VAC □ C67 046X0552-001 J1 20% 125VAC □ C67 046X052-001 | ★C38 | 046X0536-046 | .39UF 5% 200V PP | | | | | C42 | C40 | 045X0560-033 | Elect 2200 35V | | | | | C43 | C41 | 080X0099-505 | Disc .001 20% Z5F 500V | Z11 <b>%</b> 1C4 | 086X0188-001 | Regulator IC STR3123 | | C44 046X0544-009 .1 10% 100V P-Prop TRANSFORMERS AND COILS C45 045X0560-020 LYT 470UF 16V ★L1 009A2854-001 Coil Width-TODAI C46 045X0560-020 LYT 470UF 16V ★L2 009A2855-001 Coil Lin-TODAI C47 080X0099-580 Disc 100 10% Z5F 500V ★L2 009A2855-001 Coil Lin-TODAI C48 045X0560-532 Elect 100MF 35V ★11 053X0528-001 Transf Flyback V49 047X0786-501 .010UF 10% 50V P-Estr T2 052X0131-001 Transf-Horiz Driver C50 045X0560-023 LYT 1000UF 25V Tan. 68 10% 35V Tan. 68 10% 35V Tan. 68 10% 35V C51 045X0556-512 Tan. 68 10% 35V Tan. 68 10% 35V Tan. 68 10% 35V C52 047X0786-514 .033UF 5% 50V P-Estr MYR. 0.22 5% 50V MYR. 0.22 5% 50V C55 045X0578-001 Elect 560 200V A F1 016X0176-001 Fuse 1.5A SB C56 045X0569-008 LYT 22UF 160V P1 006A0428-001 Plug Header A C59 <td< td=""><td>C42</td><td>045X0560-006</td><td>LYT 1000UF 16V</td><td></td><td></td><td></td></td<> | C42 | 045X0560-006 | LYT 1000UF 16V | | | | | C45 | C43 | 080X0099-505 | Disc .001 20% Z5F 500V | | | | | C45 | | 046X0544-009 | | T | RANSFORMERS | S AND COILS | | C47 | | 045X0560-020 | LYT 470UF 16V | | | | | C48 | C46 | 045X0560-020 | LYT 470UF 16V | | | | | V49 047X0786-501 .010UF 10% 50V P-Estr T2 052X0131-001 Transf-Horiz Driver C50 045X0560-023 LYT 1000UF 25V C51 045X0525-512 Tan .68 10% 35V C51 045X0586-501 .010UF 10& 50V P-Estr .010UF 10& 50V P-Estr .010UF 10& 50V P-Estr C53 047X0786-514 .033UF 5% 50V P-Estr .033UF 5% 50V P-Estr .033UF 5% 50V P-Estr C54 047X0786-515 MYR .022 5% 50V C55 045X0578-001 Elect 560 200V | C47 | 080X0099-580 | Disc 100 10% Z5F 500V | | | | | C50 | C48 | 045X0560-532 | Elect 100MF 35V | | | | | C51 | V49 | 047X0786-501 | .010UF 10% 50V P-Estr | 12 | 052X0131-001 | Transf-Horiz Driver | | C52 047X0786-501 0.10UF 10& 50V P-Estr C53 047X0786-514 0.33UF 5% 50V P-Estr C54 047X0786-515 MYR .022 5% 50V | C50 | 045X0560-023 | LYT 1000UF 25V | | | | | C53 047X0786-514 .033UF 5% 50V P-Estr MISCELLANEOUS C54 047X0786-515 MYR .022 5% 50V MTR .022 5% 50V C55 045X0578-001 Elect 560 200V A F1 016X0176-001 Fuse 1.5A SB C56 045X0569-008 LYT 22UF 160V 016X0182-001 Fuse Clip C57 045X0569-011 Elect 47 160V P1 006A0428-001 Plug Header △ C59 080X0099-724 Disc .0015 10% Y5P 500V P2 006A0428-001 Plug Header △ C60 080X0099-723 Disc .0022 10% Y5P 500V P3 006A0427-001 Plug 2 Pin △ C61 080X0099-723 Disc .0022 10% Y5P 500V P4 006A0406-001 Plug 4-Pin OSHIMA △ C62 046X0552-001 .1 20% 125VAC P6 006A0429-005 Plug Header | C51 | 045X0525-512 | Tan .68 10% 35V | | | | | C54 047X0786-515 MYR.022 5% 50V C55 045X0578-001 Elect 560 200V | C52 | 047X0786-501 | .010UF 10& 50V P-Estr | | | | | C55 045X0578-001 Elect 560 200V | C53 | 047X0786-514 | .033UF 5% 50V P-Estr | | MICCELLA | NEOLIC | | C55 045X0578-001 Elect 560 200V ⚠ F1 016X0176-001 Fuse 1.5A SB C56 045X0569-008 LYT 22UF 160V P1 016X0182-001 Fuse Clip C57 045X0569-011 Elect 47 160V P1 006A0428-001 Plug Header C59 080X0099-724 Disc .0015 10% Y5P 500V P2 006A0428-001 Plug Header C60 080X0099-723 Disc .0022 10% Y5P 500V P3 006A0427-001 Plug 2 Pin A C61 080X0099-723 Disc .0022 10% Y5P 500V P4 006A0406-001 Plug 4-Pin OSHIMA A C62 046X0552-001 .1 20% 125VAC P6 006A0429-005 Plug Header | C54 | 047X0786-515 | MYR .022 5% 50V | | | | | C56 045X0569-008 LYT 22UF 160V 016X0182-001 Fuse Clip C57 045X0569-011 Elect 47 160V P1 006A0428-001 Plug Header △ C59 080X0099-724 Disc .0015 10% Y5P 500V P2 006A0428-001 Plug Header △ C60 080X0099-723 Disc .0022 10% Y5P 500V P3 006A0427-001 Plug 2 Pin △ C61 080X0099-723 Disc .0022 10% Y5P 500V P4 006A0406-001 Plug 4-Pin OSHIMA △ C62 046X0552-001 .1 20% 125VAC P6 006A0429-005 Plug Header | | | | <b>△</b> F1 | 016X0176-001 | Fuse 1.5A SB | | C57 045X0569-011 Elect 47 160V P1 006A0428-001 Plug Header \( \) C59 080X0099-724 Disc .0015 10\% Y5P 500V P2 006A0428-001 Plug Header \( \) C60 080X0099-723 Disc .0022 10\% Y5P 500V P3 006A0427-001 Plug 2 Pin \( \) C61 080X0099-723 Disc .0022 10\% Y5P 500V P4 006A0406-001 Plug 4-Pin OSHIMA \( \) C62 046X0552-001 .1 20\% 125VAC P6 006A0429-005 Plug Header | | | | | 016X0182-001 | Fuse Clip | | ⚠ C59 080X0099-724 Disc .0015 10% Y5P 500V P2 006A0428-001 Plug Header ⚠ C60 080X0099-723 Disc .0022 10% Y5P 500V P3 006A0427-001 Plug 2 Pin ⚠ C61 080X0099-723 Disc .0022 10% Y5P 500V P4 006A0406-001 Plug 4-Pin OSHIMA ⚠ C62 046X0552-001 .1 20% 125VAC P6 006A0429-005 Plug Header | | | Elect 47 160V | | 006A0428-001 | | | ⚠ C60 080X0099-723 Disc .0022 10% Y5P 500V P3 006A0427-001 Plug 2 Pin ⚠ C61 080X0099-723 Disc .0022 10% Y5P 500V P4 006A0406-001 Plug 4-Pin OSHIMA ⚠ C62 046X0552-001 .1 20% 125VAC P6 006A0429-005 Plug Header | ♠ C59 | | Disc .0015 10% Y5P 500V | | | | | ⚠ C62 046X0552-001 .1 20% 125VAC P6 006A0429-005 Plug Header | A C60 | | | | 006A0427-001 | | | ⚠ C62 046X0552-001 .1 20% 125VAC P6 006A0429-005 Plug Header | △ C61 | | | | 006A0406-001 | Plug 4-Pin OSHIMA | | C63 047X0786-501 .010UF 10% 50V P-Estr J202 013X1243-001 Cable Assy 4 Wire 350mm | △ C62 | | | | 006A0429-005 | Plug Header | | | C63 | 047X0786-501 | .010UF 10% 50V P-Estr | J202 | 013X1243-001 | Cable Assy 4 Wire 350mm | # REPLACEMENT PARTS LIST Ref. No. Part No. Description Ref. No. Part No. Description # P456 NECK BOARD (used with CRT's with a 22.5mm neck diameter) | | 1 400 1120 | IL BOTTIE (GOOD ITHE OIL | I O IIIIII G EEI | onnin noon alan | .010.) | | | | |------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--|--|--| | | RESISTO | ORS | CAPACITORS | | | | | | | R201<br>R202<br>R203<br>R204<br>R205<br>R206 | 340X2272-934<br>340X2151-934<br>340X2272-934<br>340X2151-934<br>340X2272-934<br>340X2151-934 | Res 2.7K Ohm 5% 0.25W<br>Res 150 Ohm 5% 0.25W<br>Res 2.7K Ohm 5% 0.25W<br>Res 150 Ohm 5% 0.25W<br>Res 2.7K Ohm 5% 0.25W<br>Res 150 Ohm 5% 0.25W | C201<br>C202<br>C203<br>C204<br>C205 | 080X0090-006<br>080X0099-006<br>080X0099-006<br>080X0099-221<br>080X0099-225 | Cap 470PF 10% Z5F CER<br>Cap 470PF 10% Z5F CER<br>Cap 470PF 10% Z5F CER<br>C Disc .01 10% Y5P 500V<br>C Disc .0015 1.5KV | | | | | R207<br>R208<br>R209<br>R210<br>R211<br>R212<br>R213 | 340X5682-633<br>340X5682-633<br>340X5682-633<br>340X3272-244<br>340X3272-244<br>340X3272-244<br>340X5689-333 | Res 6.8K 2W MO<br>Res 6.8K 2W MO<br>Res 6.8K 2W MO<br>Res 2.7K Ohm 10% 0.5W<br>Res 2.7K Ohm 10% 0.5W<br>Res 2.7K Ohm 10% 0.5W<br>Res 68 Ohm 5% 2W | Q201<br>Q202<br>Q203 | SEMICONDU<br>086X0184-001<br>086X0184-001<br>086X0184-001 | TRSTR 2SC2068LB/LBBK<br>TRSTR 2SC2068LB/LBBK<br>TRSTR 2SC2068LB/LBBK | | | | | VR201<br>VR202 | 040X0653-003<br>040X0653-001 | CTRL 2K<br>CTRL 200 | | MISCELLAN | NEOUS | | | | | VR203<br>VR204<br>VR205<br>VR206 | 040X0653-003<br>040X0653-001<br>040X0653-003<br>040X0653-001 | CTRL 2K<br>CTRL 200<br>CTRL 2K<br>CTRL 200 | P202<br>SKT201<br>J6 | 006A0429-005<br>003A0636-001<br>013X1243-001<br>030X0797-001 | Plug Header<br>Pix Socket<br>Cable Assy 4 Wire 350mm<br>Plug V Pin | | | | # P448 NECK BOARD (Used with CRT's with a 29mm neck diameter) Same as P456 NECK BOARD except: SKT201 003A0651-001 SOC CRT #### **FINAL ASSEMBLY PARTS** | | Ref. No. | Part No. | Description | |---|----------|-----------------------------------------|--------------------------------------------------------------------------------------| | | | 9K7700 SE | RIES (9") | | Δ | * | 88X0218-506<br>9A2865-001<br>2A0690-001 | CRT Toshiba A23JAN99X<br>Deflection Yoke<br>Purity & Convergence Ring<br>Assembly | | | | 9A2864-001<br>8X0378-001 | Degaussing Coil Assembly<br>Rubber Wedge | | | | 13K7800 SE | RIES (13') | | ⚠ | * | 88X0236-506<br>9A2860-001<br>2A0690-001 | CRT Orion A34JLL00X<br>Deflection Yoke<br>Purity & Convergence Ring<br>Assembly | | | | 9A2856-001<br>8X0378-001 | Degaussing Coil Assembly<br>Rubber Wedge | | | 19 | K7600 and 19K7 | 900 SERIES (19") | | Δ | * | 88X0237-506<br>9A2862-001<br>2A0690-001 | CRT Phillips MVA48ABK05X<br>Deflection Yoke<br>Purity & Convergence Ring<br>Assembly | | | | 9A2857-001<br>208X2400-901 | Degaussing Coil Assembly<br>Rubber Wedge | | | | 25K7191 SE | RIES (25") | | Δ | * | 88X0301-506<br>9A2911-002<br>2A0684-001 | CRT Rauland A63ADG25X<br>Deflection Yoke<br>Purity & Convergence Ring<br>Assembly | | | | 9A2938-001<br>8X0374-001 | Degaussing Coil Assembly<br>Rubber Yoke Wedge | | | | | | # FRONT CONTROL BOARD P632 # TYPICAL DC VOLTAGES WITH INPUT SIGNAL Voltages shown below are for reference only. Voltages may vary with input signal and with control adjustment. | TRANSISTOR<br>NUMBER | Q1 | Q2 | Q3 | Q4 | Q5 | Q6 | Q7 | Q8 | <b>Q</b> 9 | Q10 | Q11 | Q201 | Q202 | Q203 | |----------------------|------|------|------|------|------|------|------|------|------------|------|------|-------|-------|-------| | COLLECTOR | 12.0 | 12.0 | 12.0 | 10.7 | 11.0 | 11.0 | 12.0 | 12.0 | 12.3 | 40.6 | * | 107.8 | 107.8 | 107.8 | | BASE | 1.7 | 1.7 | 1.7 | 0.1 | 0.2 | 0.2 | 6.0 | 12.8 | 3.3 | 0.4 | 0.03 | 1.7 | 1.7 | 1.7 | | EMITTER | 1.0 | 1.0 | 1.0 | 0 | 0.01 | 0.01 | 5.4 | 12.0 | 2.6 | 0 | 0 | 1.4 | 1.4 | 1.4 | <sup>\*</sup> DO NOT MEASURE | | DIODE NO. | ANODE | CATHODE | |----|-----------|----------------------------------------|---------| | | D1 | 8.5 | 9.1 | | | D2 | 8.5 | 9.1 | | 0. | D3 | 8.5 | 11.0 | | | D4 | 8.5 | 11.0 | | | D5 | 0.9 | 10.7 | | | D6 | 0.9 | 10.7 | | | D7 | 0.9 | 10.7 | | | D8 | 0.55 | 2.6 | | | D9 | 7.7 | 12.0 | | | D10 | 12.0 | 11.4 | | | D11 | 0 | 2.6 | | | D12 | 0.05 | 9.8 | | | D13 | 2222 | 24.0 | | | D14 | 0.17 | 12.2 | | | D15 | 0 | 8.0 | | | D16 | *** | 123 | | | D17 | 123 | | | | D18 | 8 | * | | | D19 | 2000 | 164.3 | | | D20 | 0 | Section | | | D21 | 0 | BARC | | | D22 | | 164.3 | | | D23 | ************************************** | | | | D24 | eye. | 500.00 | | | D25 | 24.0 | 23.6 | | IC NO. | 1 | 2 | 3 | 4 | |--------------------|------|------|------|-------| | TERMINAL<br>NUMBER | | | | 3 | | 1 | 3.0 | 4.3 | 0 | 163.5 | | 2 | 2.0 | 6.8 | 12.2 | 125.2 | | 3 | 2.7 | 6.7 | 23.6 | 0 | | 4 | 2.0 | 0.6 | 0.8 | 123.0 | | 5 | 2.7 | 0.5 | 0 | 120.0 | | 6 | 2.0 | 0.3 | 24.0 | | | 7 | 2.7 | 0.9 | 2.2 | | | 8 | 2.7 | 3.5 | 2.2 | | | 9 | 1.3 | 0.3 | | | | 10 | 10.4 | 6.2 | | | | 11 | 7.9 | 0.6 | | | | 12 | 0 | 1.3 | | | | 13 | 0.55 | 12.0 | | | | 14 | 2.1 | 13.7 | - | - | | 15 | 10.5 | 0.8 | | | | 16 | 12.0 | 12.8 | | | | 22169 | | 12.8 | | | | 17 | 1.7 | | | | | 18 | 3.0 | | | | | 19 | 1.7 | | | | | 20 | 3.0 | - | | | | 21 | 1.7 | | | | | 22 | 0 | | | | | | | | | | <sup>\*</sup> DO NOT MEASURE # PC BOARD LAYOUT P456 Mini Neck FIG. 12 22 # PC BOARD LAYOUT P448 Standard Neck FIG. 13 23 # MAIN PC BOARD LAYOUT FIG. 14 FIG. 1 # AMENDMENT TO #### **GENERAL REPLACEMENT PARTS LIST** # For all K7000 models except where noted #### **P447 MAIN BOARD** | Ref. No. | Part No. | Description | |--------------|--------------|-----------------------| | | | | | | RES | ISTORS | | R13 | 340X2471-934 | 470 Ohm 5% 0.25w | | R14 | 340X2471-934 | 470 Ohm 5% 0.25w | | R15 | 340X2471-934 | 470 Ohm 5% 0.25w | | VR9 | 040X0655-003 | Trim Pot 500 Ohm | | | | | | | CAPA | CITORS | | C49 | 047X0786-501 | .01 UF 10% 50V P-Estr | | | SEMICO | NDUCTORS | | D13 | 066X0090-001 | Diode Fast SW RU-2 | | D14 | 066X0090-001 | Diode Fast SW RU-2 | | <b>★</b> D15 | 066X0090-001 | Diode Fast SW RU-2 | | D16 | 066X0090-001 | Diode Fast SW RU-2 | | D17 | 066X0090-001 | Diode Fast SW RU-2 | | D25 | 066X0089-001 | Diode Boost 1S955 NEC | | Q10 | 086X0185-001 | TRSTR NPN 25C2482 | | | MISCEL | LANEOUS | | ∆F1 | 016X0187-001 | FUSE 2A 250V SB | | P1/P2 | 006A0428-001 | Plug Header | ### **FINAL ASSEMBLY PARTS** ## 9K7700 SERIES (9") ∆ ★ 088X0315-001 CRT Samsung 27GDC85X-TC ★ 009A2945-001 Deflection Yoke (Comes with CRT) # 19K7600 and 19K7900 SERIES (19") 009A2939-001 Degaussing Coil Assembly 008X0374-001 Rubber Wedge 69X2263-100 8/90